博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
Linux环境进程间通信(一):管道及有名管道
阅读量:4294 次
发布时间:2019-05-27

本文共 11472 字,大约阅读时间需要 38 分钟。

在本系列序中作者概述了 linux 进程间通信的几种主要手段。其中管道和有名管道是最早的进程间通信机制之一,管道可用于具有亲缘关系进程间的通信,有名管道克服了管道没有名字的限制,因此,除具有管道所具有的功能外,它还允许无亲缘关系进程间的通信。 认清管道和有名管道的读写规则是在程序中应用它们的关键,本文在详细讨论了管道和有名管道的通信机制的基础上,用实例对其读写规则进行了程序验证,这样做有利于增强读者对读写规则的感性认识,同时也提供了应用范例。

管道是Linux支持的最初Unix IPC形式之一,具有以下特点:

  • 管道是半双工的,数据只能向一个方向流动;需要双方通信时,需要建立起两个管道;
  • 只能用于父子进程或者兄弟进程之间(具有亲缘关系的进程);
  • 单独构成一种独立的文件系统:管道对于管道两端的进程而言,就是一个文件,但它不是普通的文件,它不属于某种文件系统,而是自立门户,单独构成一种文件系统,并且只存在与内存中。
  • 数据的读出和写入:一个进程向管道中写的内容被管道另一端的进程读出。写入的内容每次都添加在管道缓冲区的末尾,并且每次都是从缓冲区的头部读出数据。

#include 
int pipe(int fd[2])

该函数创建的管道的两端处于一个进程中间,在实际应用中没有太大意义,因此,一个进程在由pipe()创建管道后,一般再fork一个子进程,然后通过管道实现父子进程间的通信(因此也不难推出,只要两个进程中存在亲缘关系,这里的亲缘关系指的是具有共同的祖先,都可以采用管道方式来进行通信)。

管道两端可分别用描述字fd[0]以及fd[1]来描述,需要注意的是,管道的两端是固定了任务的。即一端只能用于读,由描述字fd[0]表示,称其为管道读端;另一端则只能用于写,由描述字fd[1]来表示,称其为管道写端。如果试图从管道写端读取数据,或者向管道读端写入数据都将导致错误发生。一般文件的I/O函数都可以用于管道,如close、read、write等等。

从管道中读取数据:

  • 如果管道的写端不存在,则认为已经读到了数据的末尾,读函数返回的读出字节数为0;
  • 当管道的写端存在时,如果请求的字节数目大于PIPE_BUF,则返回管道中现有的数据字节数,如果请求的字节数目不大于PIPE_BUF,则返回管道中现有数据字节数(此时,管道中数据量小于请求的数据量);或者返回请求的字节数(此时,管道中数据量不小于请求的数据量)。注:(PIPE_BUF在include/linux/limits.h中定义,不同的内核版本可能会有所不同。Posix.1要求PIPE_BUF至少为512字节,red hat 7.2中为4096)。

关于管道的读规则验证:

/************** * readtest.c * **************/#include 
#include
#include
main(){ int pipe_fd[2]; pid_t pid; char r_buf[100]; char w_buf[4]; char* p_wbuf; int r_num; int cmd; memset(r_buf,0,sizeof(r_buf)); memset(w_buf,0,sizeof(r_buf)); p_wbuf=w_buf; if(pipe(pipe_fd)<0) { printf("pipe create error\n"); return -1; } if((pid=fork())==0) { printf("\n"); close(pipe_fd[1]); sleep(3);//确保父进程关闭写端 r_num=read(pipe_fd[0],r_buf,100);printf( "read num is %d the data read from the pipe is %d\n",r_num,atoi(r_buf)); close(pipe_fd[0]); exit(); } else if(pid>0) { close(pipe_fd[0]);//read strcpy(w_buf,"111"); if(write(pipe_fd[1],w_buf,4)!=-1) printf("parent write over\n"); close(pipe_fd[1]);//write printf("parent close fd[1] over\n"); sleep(10); } } /************************************************** * 程序输出结果: * parent write over * parent close fd[1] over * read num is 4 the data read from the pipe is 111 * 附加结论: * 管道写端关闭后,写入的数据将一直存在,直到读出为止. ****************************************************/

向管道中写入数据:

  • 向管道中写入数据时,linux将不保证写入的原子性,管道缓冲区一有空闲区域,写进程就会试图向管道写入数据。如果读进程不读走管道缓冲区中的数据,那么写操作将一直阻塞。
    注:只有在管道的读端存在时,向管道中写入数据才有意义。否则,向管道中写入数据的进程将收到内核传来的SIFPIPE信号,应用程序可以处理该信号,也可以忽略(默认动作则是应用程序终止)。

对管道的写规则的验证1:写端对读端存在的依赖性

#include 
#include
main(){ int pipe_fd[2]; pid_t pid; char r_buf[4]; char* w_buf; int writenum; int cmd; memset(r_buf,0,sizeof(r_buf)); if(pipe(pipe_fd)<0) { printf("pipe create error\n"); return -1; } if((pid=fork())==0) { close(pipe_fd[0]); close(pipe_fd[1]); sleep(10); exit(); } else if(pid>0) { sleep(1); //等待子进程完成关闭读端的操作 close(pipe_fd[0]);//write w_buf="111"; if((writenum=write(pipe_fd[1],w_buf,4))==-1) printf("write to pipe error\n"); else printf("the bytes write to pipe is %d \n", writenum); close(pipe_fd[1]); } }

则输出结果为: Broken pipe,原因就是该管道以及它的所有fork()产物的读端都已经被关闭。如果在父进程中保留读端,即在写完pipe后,再关闭父进程的读端,也会正常写入pipe,读者可自己验证一下该结论。因此,在向管道写入数据时,至少应该存在某一个进程,其中管道读端没有被关闭,否则就会出现上述错误(管道断裂,进程收到了SIGPIPE信号,默认动作是进程终止)

对管道的写规则的验证2:linux不保证写管道的原子性验证

#include 
#include
#include
main(int argc,char**argv){ int pipe_fd[2]; pid_t pid; char r_buf[4096]; char w_buf[4096*2]; int writenum; int rnum; memset(r_buf,0,sizeof(r_buf)); if(pipe(pipe_fd)<0) { printf("pipe create error\n"); return -1; } if((pid=fork())==0) { close(pipe_fd[1]); while(1) { sleep(1); rnum=read(pipe_fd[0],r_buf,1000); printf("child: readnum is %d\n",rnum); } close(pipe_fd[0]); exit(); } else if(pid>0) { close(pipe_fd[0]);//write memset(r_buf,0,sizeof(r_buf)); if((writenum=write(pipe_fd[1],w_buf,1024))==-1) printf("write to pipe error\n"); else printf("the bytes write to pipe is %d \n", writenum); writenum=write(pipe_fd[1],w_buf,4096); close(pipe_fd[1]); } }输出结果:the bytes write to pipe 1000the bytes write to pipe 1000 //注意,此行输出说明了写入的非原子性the bytes write to pipe 1000the bytes write to pipe 1000the bytes write to pipe 1000the bytes write to pipe 120 //注意,此行输出说明了写入的非原子性the bytes write to pipe 0the bytes write to pipe 0......

结论:

写入数目小于4096时写入是非原子的!

如果把父进程中的两次写入字节数都改为5000,则很容易得出下面结论:
写入管道的数据量大于4096字节时,缓冲区的空闲空间将被写入数据(补齐),直到写完所有数据为止,如果没有进程读数据,则一直阻塞。

实例一:用于shell

管道可用于输入输出重定向,它将一个命令的输出直接定向到另一个命令的输入。比如,当在某个shell程序(Bourne shell或C shell等)键入who│wc -l后,相应shell程序将创建who以及wc两个进程和这两个进程间的管道。考虑下面的命令行:

$kill -l 运行结果见 。

$kill -l | grep SIGRTMIN 运行结果如下:

30) SIGPWR	31) SIGSYS	32) SIGRTMIN	33) SIGRTMIN+134) SIGRTMIN+2	35) SIGRTMIN+3	36) SIGRTMIN+4	37) SIGRTMIN+538) SIGRTMIN+6	39) SIGRTMIN+7	40) SIGRTMIN+8	41) SIGRTMIN+942) SIGRTMIN+10	43) SIGRTMIN+11	44) SIGRTMIN+12	45) SIGRTMIN+1346) SIGRTMIN+14	47) SIGRTMIN+15	48) SIGRTMAX-15	49) SIGRTMAX-14

实例二:用于具有亲缘关系的进程间通信

下面例子给出了管道的具体应用,父进程通过管道发送一些命令给子进程,子进程解析命令,并根据命令作相应处理。

#include 
#include
main(){ int pipe_fd[2]; pid_t pid; char r_buf[4]; char** w_buf[256]; int childexit=0; int i; int cmd; memset(r_buf,0,sizeof(r_buf)); if(pipe(pipe_fd)<0) { printf("pipe create error\n"); return -1; } if((pid=fork())==0) //子进程:解析从管道中获取的命令,并作相应的处理 { printf("\n"); close(pipe_fd[1]); sleep(2); while(!childexit) { read(pipe_fd[0],r_buf,4); cmd=atoi(r_buf); if(cmd==0) {printf("child: receive command from parent over\n now child process exit\n"); childexit=1; } else if(handle_cmd(cmd)!=0) return; sleep(1); } close(pipe_fd[0]); exit(); } else if(pid>0) //parent: send commands to child { close(pipe_fd[0]); w_buf[0]="003"; w_buf[1]="005"; w_buf[2]="777"; w_buf[3]="000"; for(i=0;i<4;i++) write(pipe_fd[1],w_buf[i],4); close(pipe_fd[1]); } }//下面是子进程的命令处理函数(特定于应用):int handle_cmd(int cmd){if((cmd<0)||(cmd>256))//suppose child only support 256 commands { printf("child: invalid command \n"); return -1; }printf("child: the cmd from parent is %d\n", cmd);return 0;}

管道的主要局限性正体现在它的特点上:

  • 只支持单向数据流;
  • 只能用于具有亲缘关系的进程之间;
  • 没有名字;
  • 管道的缓冲区是有限的(管道制存在于内存中,在管道创建时,为缓冲区分配一个页面大小);
  • 管道所传送的是无格式字节流,这就要求管道的读出方和写入方必须事先约定好数据的格式,比如多少字节算作一个消息(或命令、或记录)等等;

管道应用的一个重大限制是它没有名字,因此,只能用于具有亲缘关系的进程间通信,在有名管道(named pipe或FIFO)提出后,该限制得到了克服。FIFO不同于管道之处在于它提供一个路径名与之关联,以FIFO的文件形式存在于文件系统中。这样,即使与FIFO的创建进程不存在亲缘关系的进程,只要可以访问该路径,就能够彼此通过FIFO相互通信(能够访问该路径的进程以及FIFO的创建进程之间),因此,通过FIFO不相关的进程也能交换数据。值得注意的是,FIFO严格遵循先进先出(first in first out),对管道及FIFO的读总是从开始处返回数据,对它们的写则把数据添加到末尾。它们不支持诸如lseek()等文件定位操作。

#include 
#include
int mkfifo(const char * pathname, mode_t mode)

该函数的第一个参数是一个普通的路径名,也就是创建后FIFO的名字。第二个参数与打开普通文件的open()函数中的mode 参数相同。如果mkfifo的第一个参数是一个已经存在的路径名时,会返回EEXIST错误,所以一般典型的调用代码首先会检查是否返回该错误,如果确实返回该错误,那么只要调用打开FIFO的函数就可以了。一般文件的I/O函数都可以用于FIFO,如close、read、write等等。

有名管道比管道多了一个打开操作:open。

FIFO的打开规则:

如果当前打开操作是为读而打开FIFO时,若已经有相应进程为写而打开该FIFO,则当前打开操作将成功返回;否则,可能阻塞直到有相应进程为写而打开该FIFO(当前打开操作设置了阻塞标志);或者,成功返回(当前打开操作没有设置阻塞标志)。

如果当前打开操作是为写而打开FIFO时,如果已经有相应进程为读而打开该FIFO,则当前打开操作将成功返回;否则,可能阻塞直到有相应进程为读而打开该FIFO(当前打开操作设置了阻塞标志);或者,返回ENXIO错误(当前打开操作没有设置阻塞标志)。

对打开规则的验证参见 。

从FIFO中读取数据:

约定:如果一个进程为了从FIFO中读取数据而阻塞打开FIFO,那么称该进程内的读操作为设置了阻塞标志的读操作。

  • 如果有进程写打开FIFO,且当前FIFO内没有数据,则对于设置了阻塞标志的读操作来说,将一直阻塞。对于没有设置阻塞标志读操作来说则返回-1,当前errno值为EAGAIN,提醒以后再试。
  • 对于设置了阻塞标志的读操作说,造成阻塞的原因有两种:当前FIFO内有数据,但有其它进程在读这些数据;另外就是FIFO内没有数据。解阻塞的原因则是FIFO中有新的数据写入,不论信写入数据量的大小,也不论读操作请求多少数据量。
  • 读打开的阻塞标志只对本进程第一个读操作施加作用,如果本进程内有多个读操作序列,则在第一个读操作被唤醒并完成读操作后,其它将要执行的读操作将不再阻塞,即使在执行读操作时,FIFO中没有数据也一样(此时,读操作返回0)。
  • 如果没有进程写打开FIFO,则设置了阻塞标志的读操作会阻塞。

注:如果FIFO中有数据,则设置了阻塞标志的读操作不会因为FIFO中的字节数小于请求读的字节数而阻塞,此时,读操作会返回FIFO中现有的数据量。

向FIFO中写入数据:

约定:如果一个进程为了向FIFO中写入数据而阻塞打开FIFO,那么称该进程内的写操作为设置了阻塞标志的写操作。

对于设置了阻塞标志的写操作:

  • 当要写入的数据量不大于PIPE_BUF时,linux将保证写入的原子性。如果此时管道空闲缓冲区不足以容纳要写入的字节数,则进入睡眠,直到当缓冲区中能够容纳要写入的字节数时,才开始进行一次性写操作。
  • 当要写入的数据量大于PIPE_BUF时,linux将不再保证写入的原子性。FIFO缓冲区一有空闲区域,写进程就会试图向管道写入数据,写操作在写完所有请求写的数据后返回。

对于没有设置阻塞标志的写操作:

  • 当要写入的数据量大于PIPE_BUF时,linux将不再保证写入的原子性。在写满所有FIFO空闲缓冲区后,写操作返回。
  • 当要写入的数据量不大于PIPE_BUF时,linux将保证写入的原子性。如果当前FIFO空闲缓冲区能够容纳请求写入的字节数,写完后成功返回;如果当前FIFO空闲缓冲区不能够容纳请求写入的字节数,则返回EAGAIN错误,提醒以后再写;

对FIFO读写规则的验证:

下面提供了两个对FIFO的读写程序,适当调节程序中的很少地方或者程序的命令行参数就可以对各种FIFO读写规则进行验证。

#include 
#include
#include
#include
#define FIFO_SERVER "/tmp/fifoserver"main(int argc,char** argv)//参数为即将写入的字节数{ int fd; char w_buf[4096*2]; int real_wnum; memset(w_buf,0,4096*2); if((mkfifo(FIFO_SERVER,O_CREAT|O_EXCL)<0)&&(errno!=EEXIST)) printf("cannot create fifoserver\n"); if(fd==-1) if(errno==ENXIO) printf("open error; no reading process\n"); fd=open(FIFO_SERVER,O_WRONLY|O_NONBLOCK,0); //设置非阻塞标志 //fd=open(FIFO_SERVER,O_WRONLY,0); //设置阻塞标志 real_wnum=write(fd,w_buf,2048); if(real_wnum==-1) { if(errno==EAGAIN) printf("write to fifo error; try later\n"); } else printf("real write num is %d\n",real_wnum); real_wnum=write(fd,w_buf,5000); //5000用于测试写入字节大于4096时的非原子性 //real_wnum=write(fd,w_buf,4096); //4096用于测试写入字节不大于4096时的原子性 if(real_wnum==-1) if(errno==EAGAIN) printf("try later\n");}
#include 
#include
#include
#include
#define FIFO_SERVER "/tmp/fifoserver"main(int argc,char** argv){ char r_buf[4096*2]; int fd; int r_size; int ret_size; r_size=atoi(argv[1]); printf("requred real read bytes %d\n",r_size); memset(r_buf,0,sizeof(r_buf)); fd=open(FIFO_SERVER,O_RDONLY|O_NONBLOCK,0); //fd=open(FIFO_SERVER,O_RDONLY,0); //在此处可以把读程序编译成两个不同版本:阻塞版本及非阻塞版本 if(fd==-1) { printf("open %s for read error\n"); exit(); } while(1) { memset(r_buf,0,sizeof(r_buf)); ret_size=read(fd,r_buf,r_size); if(ret_size==-1) if(errno==EAGAIN) printf("no data avlaible\n"); printf("real read bytes %d\n",ret_size); sleep(1); } pause(); unlink(FIFO_SERVER);}

程序应用说明:

把读程序编译成两个不同版本:

  • 阻塞读版本:br
  • 以及非阻塞读版本nbr

把写程序编译成两个四个版本:

  • 非阻塞且请求写的字节数大于PIPE_BUF版本:nbwg
  • 非阻塞且请求写的字节数不大于PIPE_BUF版本:版本nbw
  • 阻塞且请求写的字节数大于PIPE_BUF版本:bwg
  • 阻塞且请求写的字节数不大于PIPE_BUF版本:版本bw

下面将使用br、nbr、w代替相应程序中的阻塞读、非阻塞读

验证阻塞写操作:

  1. 当请求写入的数据量大于PIPE_BUF时的非原子性:
    • nbr 1000
    • bwg
  2. 当请求写入的数据量不大于PIPE_BUF时的原子性:
    • nbr 1000
    • bw

验证非阻塞写操作:

  1. 当请求写入的数据量大于PIPE_BUF时的非原子性:
    • nbr 1000
    • nbwg
  2. 请求写入的数据量不大于PIPE_BUF时的原子性:
    • nbr 1000
    • nbw

不管写打开的阻塞标志是否设置,在请求写入的字节数大于4096时,都不保证写入的原子性。但二者有本质区别:

对于阻塞写来说,写操作在写满FIFO的空闲区域后,会一直等待,直到写完所有数据为止,请求写入的数据最终都会写入FIFO;

而非阻塞写则在写满FIFO的空闲区域后,就返回(实际写入的字节数),所以有些数据最终不能够写入。

对于读操作的验证则比较简单,不再讨论。

在验证了相应的读写规则后,应用实例似乎就没有必要了。

管道常用于两个方面:(1)在shell中时常会用到管道(作为输入输入的重定向),在这种应用方式下,管道的创建对于用户来说是透明的;(2)用于具有亲缘关系的进程间通信,用户自己创建管道,并完成读写操作。

FIFO可以说是管道的推广,克服了管道无名字的限制,使得无亲缘关系的进程同样可以采用先进先出的通信机制进行通信。

管道和FIFO的数据是字节流,应用程序之间必须事先确定特定的传输"协议",采用传播具有特定意义的消息。

要灵活应用管道及FIFO,理解它们的读写规则是关键。

  • UNIX网络编程第二卷:进程间通信,作者:W.Richard Stevens,译者:杨继张,清华大学出版社。丰富的UNIX进程间通信实例及分析,对Linux环境下的程序开发有极大的启发意义。
  • linux内核源代码情景分析(上、下),毛德操、胡希明著,浙江大学出版社,当要验证某个结论、想法时,最好的参考资料;
  • UNIX环境高级编程,作者:W.Richard Stevens,译者:尤晋元等,机械工业出版社。具有丰富的编程实例,以及关键函数伴随Unix的发展历程。
  • 点明linux下sigaction的实现基础,linux源码../kernel/signal.c更说明了问题;
  • pipe手册,最直接而可靠的参考资料
  • fifo手册,最直接而可靠的参考资料
<script>window._bd_share_config={"common":{"bdSnsKey":{},"bdText":"","bdMini":"2","bdMiniList":false,"bdPic":"","bdStyle":"0","bdSize":"16"},"share":{}};with(document)0[(getElementsByTagName('head')[0]||body).appendChild(createElement('script')).src='http://bdimg.share.baidu.com/static/api/js/share.js?v=89860593.js?cdnversion='+~(-new Date()/36e5)];</script>
阅读(31) | 评论(0) | 转发(0) |
0

上一篇:

下一篇:

相关热门文章
给主人留下些什么吧!~~
评论热议

转载地址:http://ssuws.baihongyu.com/

你可能感兴趣的文章
OpenGL ES 3.0(八)实现带水印的相机预览功能
查看>>
OpenGL ES 3.0(九)实现美颜相机功能
查看>>
FFmpeg 的介绍与使用
查看>>
Android 虚拟机简单介绍——ART、Dalvik、启动流程分析
查看>>
原理性地理解 Java 泛型中的 extends、super 及 Kotlin 的协变、逆变
查看>>
FFmpeg 是如何实现多态的?
查看>>
FFmpeg 源码分析 - avcodec_send_packet 和 avcodec_receive_frame
查看>>
FFmpeg 新旧版本编码 API 的区别
查看>>
RecyclerView 源码深入解析——绘制流程、缓存机制、动画等
查看>>
Android 面试题整理总结(一)Java 基础
查看>>
Android 面试题整理总结(二)Java 集合
查看>>
学习笔记_vnpy实战培训day02
查看>>
学习笔记_vnpy实战培训day03
查看>>
VNPY- VnTrader基本使用
查看>>
VNPY - CTA策略模块策略开发
查看>>
VNPY - 事件引擎
查看>>
MongoDB基本语法和操作入门
查看>>
学习笔记_vnpy实战培训day04_作业
查看>>
OCO订单(委托)
查看>>
学习笔记_vnpy实战培训day05
查看>>